海藻酸钠加什么会变橡胶
⑴ 海藻酸钠糊的增黏机理
因为海藻酸钠溶于水可形成粘稠的胶液。
海藻酸钠遇到钙离子可迅速发生离子交换,生成凝胶。利用这种性质,将海藻酸盐溶液滴入含有钙离子的水溶液中可产生海藻酸钙胶球,使用喷嘴,可制造出凝胶纤维。
将含有钙离子的水溶液加入海藻酸盐溶液,可生成凝胶冻。海藻酸钠与钙离子形成的凝胶具有热不可逆性。
⑵ 凝胶原理是什么
原理是:在网状结构中,介质被包围在网眼中间,不能自由流动,因而形成半固体。
由于构成网架的高分子化合物或线性胶粒仍具有一定的柔顺性,所以整个凝胶也具有一定的弹性。
凝胶的形成首先决定于高分子或胶粒必须具有线形结构,其次与浓度、温度、时间等有关。浓度越大,温度越低,放置时间的延长等都能促进凝胶的形成。
(2)海藻酸钠加什么会变橡胶扩展阅读:
凝胶的特点:
1、固化的凝胶保留了液体的大部分应力消除和自愈性质,同时提供弹性体橡胶的稳定性。
2、在固化材料中提供最终的应力消除,以保护电路和互连免受热和机械应力。
3、适用于在潮湿和其他恶劣环境中的电气和电气设备中提供保护,从高压绝缘以及提供低应力环境。尤其是精密电子元器件或敏感电路。
⑶ 怎样才能使海藻酸钠凝结成胶状急求!!
你确定是海藻酸钠么?海藻酸钠的水溶液是很粘稠的,在2%以上整个就是坨浆糊了。另外氯化钙用不着饱和的,整个交联反应非常快基本上不用等的。
海藻酸钠如果要结成大的块状浓度基本在0.5%以上,加热至60℃搅拌就能溶解,之后把氯化钙的溶液倒进去就是(浓度其实不重要,单纯只是交联凝胶的话二者质量比差很多,除非你有特殊需求什么的)。建议是滴加进去,这样表面就有一层凝胶膜优先形成,之后把氯化钙全部倒进去泡着,过个一段时间里外都是凝胶了。不过依据海藻酸钠产地和性质不同出来的效果也不一样。而且这个方法出来的海藻酸钠凝胶里外的强度性质有所差别。
如果要均一的凝胶块,要复配。另外你要做凝胶,一般钙盐、锌盐和钡盐都可以
⑷ 海藻酸钠溶液钙化之后是什么状态
黏稠的胶体。海藻酸钠混合一定的钙盐、磷酸盐及柠檬酸后,生成弱凝茄桐旅胶。海藻酸钠溶液钙化之后是黏稠的胶体状态。海藻酸钠是从褐藻类的海带或马尾藻中提轮悔取碘和甘颤凳露醇之后的副产物,其分子由β-D-甘露糖醛酸(β-D-mannuronic,M)和α-L-古洛糖醛酸(α-L-guluronic,G)按(1→4)键连接而成。
⑸ 海藻酸钠凝胶的形成机理是什么和琼脂,卡拉胶的凝胶形成机理有何区别
海藻酸钠本身不能形成凝胶,只能通过加酸或钙离子才能形成凝胶,而且一旦形成,凝胶热不可逆,卡拉胶的凝胶形成后,加热还是会融化
⑹ 请教各位大神,如何能降低海藻酸钠与氯化钙发生离子交换后所形成凝胶的吸水率
将溶解好的海藻酸钠溶液加入溶解好的明胶水溶液,将两种溶液按一定比例共混,脱泡、减压脱泡后,在室温条件下于凝固浴中以湿法纺丝制备海藻/明胶纤维,该共混纤维具有较高的生理活性、优良的力学性能和吸水率,在医疗领域具有广泛的应用前景,尤其适用于制造无纺布作伤口敷料。 海藻酸微溶于水,不溶于大部分有机溶剂。它溶于碱性溶液,使溶液具有粘性。海藻酸钠粉末遇水变湿,微粒的水合作用使其表面具有粘性。然后微粒迅速粘合在一起形成团块,团块很缓慢的完全水化并溶解。如果水中含有其它与海藻酸盐竞争水合的化合物,则海藻酸钠更难溶解于水中。水中的糖、淀粉或蛋白质会降低海藻酸钠的水合速率,混合时间有必要延长。单价阳离子的盐(如NaCl)在浓度高于0.5%时也会有类似的作用。海藻酸钠在1%的蒸馏水溶液中的pH值约为7.2。 稳定性 海藻酸钠具有吸湿性,平衡时所含水分的多少取决于相对湿度。干燥的海藻酸钠在密封良好的容器内于25℃及以下温度储存相当稳定。海藻酸钠溶液在pH5~9时稳定。聚合度(DP)和分子量与海藻酸钠溶液的粘性直接相关,储藏时粘性的降低可用来估量海藻酸钠去聚合的程度。高聚合度的海藻酸钠稳定性不及低聚合度的海藻酸钠。据报道海藻酸钠可经质子催化水解,该水解取决于时间、pH和温度。藻酸丙二醇酯溶液在室温下、pH3~4时稳定;pH小于2或大于6时,即使在室温下粘性也会很快降低。 免疫原性和生物相容性 海藻酸钠是一种天然、生物能降解的生物高聚物。海藻酸钠中发现的化学成分和促有丝分裂的杂质是海藻酸盐钠具有免疫原性的主要原因。很多报道显示植入海藻酸钠会产生纤维化反应。据知海藻酸钠可能含有热原、多酚、蛋白质和复杂的碳水化合物。多酚的存在很可能对固定化细胞有害,而热原、蛋白质和复杂的碳水化合物会诱使宿主产生免疫反应。 Yang S用新的交联方法制备了明胶/海藻酸钠复合物类的可吸收海绵体。对其进行SEM观察发现,海绵基本是均匀的,且证明形态取决于明胶/海藻酸钠比例,与交联度无关。虽然发生了交联反应,海绵在胶原酶的生理盐水缓冲液中仍可降解。 海藻酸/胶原共混纤维生物相容性好,粘附性强,具有促进伤口愈合的活性功能及止血功能,具有较好的药物及生长缓释作用,可与局部抗菌药物组合制成基因工程敷料用于感染创面;也可与活性生长因子或活性细胞组合制成基因工程敷料用于顽固性溃疡及烧伤创面;无菌、低过敏原、无毒、无热源。 海藻酸/(胶原)明胶纤维的强度是利用Ca++交联及其之间的聚电解质效应而得到的。海藻酸钠能与Ca++络合形成水凝胶,主要反应机理为G单元与Ca++络合交联,形成蛋盒(egg-box)结构,G基团堆积而形成交联网络结构,转变成水凝胶纤维而析出。酸浴的主要作用是得到-NH3+,因为在制备纺丝液时,需要调节(胶原)明胶的pH值为弱碱性,目的是屏蔽掉(胶原)明胶的-NH3+,避免(胶原)明胶与海藻酸钠形成凝胶沉淀,提高二者的相容性;而纺制成纤维后在酸浴中将 (胶原)明胶的-NH2转变成为-NH3+,NH3+与-COO-产生聚电解质效应,提高纤维之间的交联度,提高了纤维的断裂强度。
⑺ 明胶与海藻酸钠的增效搭配
海藻酸钠的复合特性及其在肉制品中的应用(2010-03-13 15:46:32)
杨琴 胡国华 马正智
海藻酸钠是一种很好的增稠剂,稳定剂和胶凝剂,用于改善和稳定焙烤食品(蛋糕,馅饼),馅,色拉调味汁,牛奶巧克力的质地以及防止冰淇淋贮存时形成大的冰晶,海藻酸盐还用来加工各种凝胶食品,例如速溶布丁,果冻,果肉果冻,人造鱼子酱以及稳定新鲜果汁和啤酒泡沫。而且海藻酸钠可作为仿生食品或疗效食品的基材,还是一种天然膳食纤维。正是因为海藻酸钠的这些重要作用,在国内外已日益被人们所重视,已经成为产销量最大的食品胶体之一。
含海藻酸钠复合胶在肉制品中的应用是当前国内外海藻酸钠在食品中新的重要研究应用方向之一,目前国内外有关海藻酸钠的复合作用特性及其在肉制品中的研究报道较少、较新,本文结合我们实验室的研究情况对海藻酸钠的复合作用特性及其在肉制品中的研究进展进行综述。
1 海藻酸钠复合作用特性研究进展
海藻酸钠的性质主要取决于其黏度和甘露糖醛与古洛糖醛酸的比率(M/G);分子质量越大,其黏度也越高,而决定成胶能力大小的则是M/G值[3]。Mahesh等通过微波辐射测定水解海藻酸钠M/G比值,该方法将海藻酸钠溶于草酸或硫酸后在100%微波功率下曝光使得甘露糖醛和古洛糖醛酸被分开,运用此方法测出的M/G值为0.38,与用常规方法测出的M/G值较为相似,也可以通过密度、孔隙率、黏度、旋光测量、13C NMR、红外光谱、热重分析、X射线、圆二色、摩尔质量分布以及扫描电子显微镜来验证甘露糖醛酸和古洛糖醛酸[4]。海藻酸钠溶液是典型的假塑性体系,溶液的pH值、盐类性质、浓度和温度都会影响它的流变性[5]。
海藻酸钠与钙离子形成的凝胶,具有耐冻结性和干燥后可吸水膨胀复原等特性。海藻酸钠的黏度影响所形成凝胶的脆性,黏度越高,凝胶越脆。增加钙离子和海藻酸钠的浓度而得到的凝胶,强度增大。胶凝形成过程中可通过调节pH值,选择适宜的钙盐和加入磷酸盐缓冲剂或螯合剂来控制。也可以通过逐渐释出多价阳离子或氢离子,或两者同时来控制。Takahiro等研究了海藻酸钠与碳酸钙作用的流变行为。结果当海藻酸钠浓度固定(0.5% ,w/v)和内酯浓度固定(15mM),碳酸钙含量高(15mM)时高古洛糖醛酸样品形成的棒状结构具有较高的弹性;碳酸钙含量低(3.75mM)时高甘露糖醛酸样品形成的网状结构具有较高的弹性。胶体的凝胶行为在接近溶胶-凝胶时,除高甘露糖醛酸的样品在碳酸钙含量最低时,其余均被描述为渗流模型。当碳酸钙用量为7.5mM时,两种海藻酸钠样品都表现出相同的凝胶动力学[6]。Michelle等研究了钠离子和海藻酸钠浓度对海藻胶体系剪切特性的影响。结果表明,浸泡在氯化钠中15小时后,平衡剪切和动力剪切模量均分别减少了63和84,浸泡在氯化钠中7天后,其特性没有进一步的变化[7]。
海藻酸钠除能单独使用外,能和大多数天然和合成的食品胶体配合使用,效果和性价比会比单独使用要好一些[3]。M.S. Tapia等研究了海藻酸钠与结冷胶凝胶复合保存新鲜木瓜,实验表明2%海藻酸钠及结冷胶为基础的凝胶能够改善水蒸气的阻力,影响气体交换,从而达到保存木瓜的目的[8]。Pernilla Walkenström等研究了果胶与海藻酸钠复配的显微结构和流变行为,结果显示低M/G海藻酸钠与高酯化果胶有明显的协同增效作用,有最高的储能模量和最快的凝胶动力学,而高M/G海藻酸钠与低酰胺果胶则是较低的储能模量和较慢的凝胶动力学[9]。周爱梅等研究了海藻酸钠与高甲氧基果胶复合体系凝胶特性的一些影响因素,结果表明添加适量的蔗糖可增加体系的凝胶强度、持水性以及凝胶融点;添加钙离子可生成热不可逆凝胶;而添加内酯则可诱导两种胶在单独不能成胶的条件下形成凝胶[10]。 Maud′等研究了海藻酸钠与明胶复合的凝胶性质,结果表明,在特殊条件下,能得到海藻酸钠与明胶的复合凝胶。起初由于钙离子的缓慢释放而得到不可逆的海藻胶,而冷却后则得到可逆的明胶凝胶[11]。Qunyi等研究了普鲁兰糖、海藻酸钠以及羧甲基纤维素(CMC)共混膜的制备及性能。结果表明,但在水中溶解较快。将海藻酸钠与CMC添加到普鲁兰糖中,水的阻力和力学性能明显降低。将总多糖浓度提高到17-33%降低了薄膜在水中的溶解时间。红外光谱表明普鲁兰糖、海藻酸钠、CMC共混膜与纯普鲁兰糖相比有羧基中较弱氢键作用[12]。Maria等研究了酪蛋白酸钠、海藻酸钠或κ-卡拉胶、脂类(油酸和蜂蜡)共混的可食用性膜的拉伸性能和水蒸气渗透率,发现多糖改善了薄膜的拉伸性能,但是增加了水蒸气渗透率,这与多糖浓度有着显着的关系;而增加蜂蜡的含量能降低水蒸气渗透率[13]。
János Bajdik等通过喷雾干燥和微胶囊技术研究了海藻酸钠与乳糖的相互作用,结果表明海藻酸钠膜的机械强度随着乳糖比较的增加而降低[14]。赵谋明等研究了不同浓度明胶、海藻酸钠混合溶胶粘度变化,以及不同pH值和不同离子浓度对体系粘度变化的影响。发现明胶与海藻酸钠主要的交互作用力为二成分间静电引力,并对仿生鱼翅的生产工艺和配方进行了初步研究,得出8%明胶、2%海藻酸钠在纺丝原液pH为6.0时,制备的仿生鱼翅效果最佳[15]。通过研究海藻酸钠凝胶特性的影响因素,表明形成的海藻酸钙凝胶特性较好的条件是:海藻酸钠浓度为1.5%、pH为4~5、温度为50~60℃,溶胀时间为45min,钙盐采用乳酸钙;另外,海藻酸钠与瓜尔豆胶、明胶、β-环状糊精、EDTA的协同增效作用都有利于海藻酸钙凝胶的形成[16]。张亚琼等研究了在较高浓度时,随着钙离子加入量的增大,海藻酸盐体系的粘度先降至一极小值,然后迅速增大,直至有凝胶状物质生成;在较低浓度时,海藻酸盐体系的粘度变化幅度不大;在15~35℃温度范围内,Inηrel-1/T具有良好的线性关系;NaCl的加入使体系相对粘度下降。通过FTIR和DSC研究表明,Ca2+与海藻酸盐发生了相互作用,所形成的海藻酸钙复合物的热稳定性比相应的海藻酸钠高[17]。文献报道以魔芋葡甘聚糖和海藻酸钠为主要原料,利用氯化钙交联制备复合凝胶,研究了复合凝胶溶胀性能的影响因素,表明复合凝胶在溶胀初期溶胀比增加很快,随着溶胀时间的延长,溶胀比增长变缓,最后达到平衡。随着魔芋葡甘聚糖含量的增加,复合凝胶的平衡溶胀比增加,当魔芋葡甘聚糖与海藻酸钠的比例大于2.5:1.5(W/W)时,复合凝胶的强度降低。当Ca2+ 浓度从1.0 mol/L增加到3.0 mo/L时,复合凝胶的平衡溶胀比由5.7降至3.6。当环境pH值为7.4时,复合凝胶的平衡溶胀比最大[18]。
2 海藻酸钠在肉制品中的应用研究进展
海藻酸钠可做成各种凝胶食品,保持良好的交替形态,不发生渗液或收缩,适合用于冷冻食品中[3],同时还能降低人体内胆固醇含量、疏通血管、预防肥胖和糖尿病等作用[19]。而海藻酸钠若添加到肉制品中,可改善其物理性质,增加粘度,富于其良好的口感,同时可以增加肉制品的粘着性、持水性和柔嫩性,减少营养成分损失,提高产品质量[20]。但海藻酸钠会导致肉制品析水较严重等问题,一般需要复合应用。
2.1 海藻酸盐用作粘结剂
重组肉是借助于机械和添加辅料以提取肌肉纤维中的机制蛋白和利用添加剂的粘合作用,改变肉类原有的结构,使肌肉组织、脂肪组织和结缔组织得以合理的分布和转化,使肉颗粒和肉块重新组合,经冷冻后直接出售或者经预热处理保留和完善其组织结构[21],因此需要凝胶网络结构将肉与肉之间结合起来。而海藻酸盐能和许多高价的阳离子反应(镁除外)产生交联作用。当多价阳离子的含量增加,会使得海藻酸盐溶液变稠,形成冻胶。钙是最常用于改变海藻酸盐溶液的流体性质和凝胶性质的多价离子[3]。因此,海藻酸钠与钙离子所形成的凝胶常用作粘结剂。研究者对海藻酸钙粘结剂在重组牛肉中的运用进行了优化研究,确定基于产品的性质和添加成分的数量,添加0.4%海藻胶,0.075%碳酸钙和0.6%乳酸为最优[22]。W. J. Means等研究了海藻酸钙凝胶在重组牛排中作粘结剂的应用,从色泽、强度、口感、风味等方面得出优化成分含量为0.8~1.2%海藻酸钠,0.144~0.216%碳酸钙和500ppm抗坏血酸钠[23]。有研究人员研究了在重组猪肉卷的制备中,乳酸钙的应用。通过5组实验表明,0.7%海藻酸钠、0.125%碳酸钙和0.3%乳酸钙的硬度和粘度明显较高,感官评价较好,并能延长货架期[24]。
2.2 海藻酸盐用作保水剂
肉制品的持水力是衡量肉制品质量的一个重要指标,它不仅影响肉制品的色、香、味、营养成分、多汁性、嫩度等食用品质,而且还影响到产品的经济价值[20]。肌肉持水力的高低直接关系到肉制品的质地、嫩度、切片性、弹性、口感、出品率等质量指标,也影响了肉类企业的经济效益。因为屠宰前管理、屠宰过程、冷藏冷冻等冷加工工艺和熟制工艺等加工过程造成的肌肉失水率高达3%~6%。我国每年由于肌肉失水造成大约310万吨肉类损失,给企业和国家带来巨大的损失。因此,必须努力提高肌肉的持水能力[21]。P. J. Shand等研究了外加胶体分别与海藻酸/钙和磷酸盐复配对重组牛肉卷的性质影响,研究发现海藻酸钙与结冷胶复配使得蒸煮产率有显着改善[25]。X. L. Yu等研究了用一种可食用的涂层(海藻酸钙)来提高冻肉的质量,结果海藻酸钠能够降低冻肉的解冻损失量,而且能够保持冻肉的功能特性以及能够影响总蛋白的溶解度。海藻酸钠和氯化钙的浓度都能对反应巯基有显着影响,而且氯化钙能够明显降低剪切力和pH。最佳涂层的实验条件为:0.3%海藻酸钠,7%氯化钙,反应时间是5-7分钟[26]。还有研究人员就不同目数的海藻酸盐对肉制品持水力及质构的影响进行研究,结果表明,在相同工艺条件下不同凝胶强度海藻酸钠对肉制品持水力的影响是有差别的,通过对复配实验分析,得知采用0.2%的170目海藻酸钠与0.3%的卡拉胶复合可大大提高肉制品的品质和质构,其持水性达到最佳[25]。通过对羊肉无磷保水剂和粘结剂的研究表明,用海藻酸钠、黄原胶、卡拉胶和酪蛋白酸钠得到的海藻酸钙无磷粘结剂的羊肉样品无论是持水力还是出成率都比空白羊肉样和注入混合磷酸盐溶液的羊肉样显着提高,经冷冻处理后海藻酸钙无磷保水剂对提高羊肉保水性能和出成率仍然有效[27]。袭院生等通过在牛肉和猪肉中添加淀粉、蛋白粉、海藻酸钠和钙盐、碳酸盐、磷酸盐来提高牛肉和猪肉的保水性能,结果表明:淀粉和蛋白粉能提高肌肉得率的3%-5%,嫩度稍有提高;磷酸盐能提高9.5%的肌肉得率,嫩度明显提高;海藻酸钠和钙盐能提高10%的肌肉得率,但有苦味,嫩度明显提高;碳酸盐能提高大约10%,略有碱味[28]。张慧旻等将海藻酸钠和结冷胶作为脂肪替代品,改善低脂肉糜类产品的品质,结果显示在结冷胶与海藻酸钠的复配试验中,海藻酸钠对肉糜凝胶蒸煮损失的降低和保水性的提升起主要作用,而结冷胶在低浓度(0.25%)时可协同海藻酸钠显着降低凝胶蒸煮损失,同时,复合凝胶的硬度均随着海藻酸钠和结冷胶添加浓度的增加而表现出依次降低的变化规律[19]。
3 结束语
海藻酸钠是一种亲水性胶体,与钙离子以及明胶、果胶、魔芋胶、卡拉胶、结冷胶等其他多种胶体有协同增效的作用,用于肉制品中能形成致密、稳定的网状结构,提高肉制品的凝胶强度、粘结性以及持水性能。今后海藻酸钠及其复合胶在肉制品中预计具有较好的应用前景。
——转自《中国食品添加剂》2010.1.,有删节.